Обследование свайного фундамента
Обследование свайного фундамента включает в себя вскрытие ростверков и оголовков свай, а также обеспечения доступа обследовательской партии непосредственно к самим сваям.
В полевых условиях производится определение геометрических параметров свай (с помощью приборов ультразвукового контроля, ИДС-1, пр.). Кроме того, определяются прочностные характеристики бетона свай, а также свайных ростверков. Составляется дефектная ведомость и прочие виды работ.
Процесс включает:
- визуальное обследование;
- сбор всех действующих нагрузок на фундамент;
- инструментальное обследование — разрушающими, неразрушающими методами, в том числе:
- определение прочности и армирования при помощи неразрушающего контроля, оценка на соответствие показателям проекту и исполнительной документации (ультразвуковой контроль, склерометрический метод, пр.);
- оценку исправной работы конструкции фундаментов;
- забор образцов грунта для дальнейших лабораторных исследований.
В ходе инструментального техобследования особое внимание уделяется грунтам основания. Извлекаются пробы почвенного покрова для лабораторных исследований
В конечном счете определяются физико–механические свойства грунта, а затем с помощью специального ПО производится расчет несущей способности и всех характеристик, необходимых для дальнейших расчетов. Подробнее с составом работ по техническому обследованию можно ознакомиться здесь.
Уточнённая таблица с поправками на текучесть и пористость грунта
Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.
Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.
Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.
Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).
Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.
Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)
Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью. При желании получить максимально близкие к реальности данные, используйте специальный калькулятор, где есть возможность указывать все влияющие на конечную цифру коэффициенты вот здесь.
Прибор для определения несущей способности грунта
При выборе типа и параметров фундамента для строительства дома необходимо знать несущую способность грунтана строительном участке. В первую очередь исследуется тип грунта, затем определяется его несущая способность.
Какой фундамент подходит для глинистой почвы
Слои закладки фундамента для суглинистой почвы с гидроизоляцией.
После точного определения типа почвы на участке и глубины залегания грунтовых вод необходимо решить, какой фундамент можно будет возвести. Глинистая почва ограничивает в выборе основания дома, поэтому можно воспользоваться только двумя вариантами: построить ленточный или свайный фундамент. Какой именно выбрать, попытаемся выяснить далее.
Если грунт более или менее однородный, то для него подойдет ленточный фундамент, свайный применяется в тех случаях, когда в почве попадаются камни.
Построить фундамент на суглинках нелегко, но если вникнуть во все нюансы этой работы, сделать это возможно. При возведении фундамента на суглинке могут возникнуть такие проблемы, как обламывание, вспучивание и просадка конструкции. Чаще всего это происходит вследствие недостаточной глубины закладывания фундамента либо при большом давлении, которое может оказываться на него. Проблемы могут возникнуть у дома, фундамент которого был возведен на суглинке, если при его строительстве применялся мелкий камень, либо стены были построены из пеноблоков.
Схема ленточного фундамента для глинистой почвы.
Чтобы избежать всех вышеописанных проблем, строительство дома должно сопровождаться выбором правильного типа фундамента. При этом блоки можно отсеять сразу же, так как в роли связующего элемента потребуется устройство армирующего каркаса. Низ основания должен быть шире, чем его верх. При возникновении опасений по поводу давления грунта, основание необходимо будет промазать машинным маслом или обернуть его поливинилхлоридной пленкой, которая не пропустит воду к фундаменту во время оттепели. Нелишним будет утеплить верхний слой земли, для чего можно использовать керамзит или щебень.
На выбор типа фундамента. который можно возвести на суглинке, также влияет материал, используемый при возведении стен дома. Если это будет кирпич, то свой выбор стоит остановить на ленточном фундаменте, который способен выдержать большую нагрузку.
Если же планируется строительство сарая или летней теплицы, то лучше выбрать свайный фундамент, который способен обеспечить необходимую степень монументальности возводимого строения.
На глинах и суглинках также можно использовать основания в виде монолитной плиты, которую обязательно устанавливают на песчаную подушку. Его преимущество заключается в плавучести, а значит он легко выдерживает любые движения грунта. Еще одним плюсом монолитного фундамента является отсутствие необходимости проведения глобальных земельных работ.
Несущая способность грунтов.
Несущая способность грунтов – это одна из его основных характеристик, которую необходимо знать при строительстве дома, она показывает какую нагрузку может выдержать единица площади грунта и измеряется в кг/см2 или т/м2. По несущей способности грунта определяют, какой должна быть опорная площадь фундамента дома: чем хуже способность грунта выдерживать нагрузку, тем больше должна быть площадь фундамента. Сама несущая способность грунта зависит от трех факторов: тип грунта, степень его уплотненности и насыщенность грунта влагой. Увеличение влажности грунта снижает его несущую способность в несколько раз. Только крупные пески и пески средней крупности не меняют свои свойства при увеличении влажности. Избыточная влажность грунта, скорее всего, связана с высоким уровнем грунтовых вод. Чтобы узнать несущую способность грунта не обязательно обращаться за помощью к геологам, в случае самостоятельного строительства дома можно определить тип грунта на глаз. Для этого простым земляным буром можно пробурить в земле скважину глубиной 2 м или выкопать яму лопатой. При этом сразу будет понятно, какой грунт находится на этой глубине и насколько он увлажнен. Далее по типу и увлажненности грунта определить его несущую способность. На территории нашей страны в основном преобладают песчаные и глинистые грунты, за исключением болотистой местности с просадочными торфяными грунтами, а также горных хребтов и возвышенностей со скальными грунтами.
Отличить песок от глины не составляет труда: в песке ясно видны отдельные песчинки, при растирании песчаного грунта меду ладонями они отчетливо чувствуются. Крупный песок имеет размер частиц от 0,25 до 5 мм, такие частицы хорошо видны невооруженным глазом, а песок средней плотности имеет размер песчинок до 2 мм. Супесь содержит 3-10% глинистых частиц, в сухом состоянии она крошится, если скатать из нее шарик, то он рассыпается при легком давлении на него. Суглинок содержит от 10% — 30% глинистых частиц, обладает большей пластичностью, чем супесь. Если из суглинка сделать шар и раздавить его, то он превращается в лепешку с трещинами по краям. Глина – наиболее пластичный грунт, содержит более 30% глинистых частиц ,если раздавить шар, сделанный из глины, то он превратится в лепешку, на краях которой не будет трещин. Есть еще один метод определения типа глинистого грунта.
Исследуемый образец грунта укладываем в стеклянную банку на ¼ её высоты; доливаем в банку воды до уровня ¾ высоты; добавляем в воду 1 чайную ложку средства для мытья посуды; закрываем банку крышкой и встряхиваем содержимое в течение 10 минут. За это время образец грунта разделится на составляющие; банку ставим и через 1 минуту отмечаем на ней маркером уровень песка, который осел на дне; уровень ила отмечаем через 2 часа; ждем пока вода станет прозрачной и отмечаем уровень слоя глины. Процесс осадки глины достаточно длительный и может занять от 2 до 7 дней; находим толщину слоя песка, ила и глины. Например: уровень песка через 1 минуту составил 6 см, уровень ила 7 см от дна банки, уровень глины 10 см от дна банки. vk.com/postroim_svoi_dom Тогда: толщина слоя песка 6 см, толщина слоя ила 1 см (7-6=1), толщина слоя глины 3 см (10-7=3), а общая толщина осадка 10 см; вычисляем относительную величину каждого вида осадка (в процентах): толщину слоя песка/ила/глины делим на общую толщину осадка, затем умножаем на 100 процентов: 6/10*100% =60% — содержание песка в %;
1/10*100%=10% — содержание ила (пыли) в %;
3/10*100%=30% — содержание глины в %.
Расчетное сопротивление грунта на разной глубине.Величины расчетного сопротивления грунтов (R0), приведенные ниже , даны для глубины заложения фундамента 1,5…2 м.
Если глубина заложения фундамента меньше чем 1,5 м. то расчетное сопротив¬ление грунта (Rh) определяется по формуле: Rh = 0,005R0(100 +h/3), где h — глубина заложения фундамента в см. Пример 1.Глинистый грунт на глубине 0,5 м при R0=4 кг/см2 будет иметь расчетное со¬противление грунта Rh = 2,33 кг/см2. Если глубина заложения фундамента больше чем 2 м. то расчетное сопротивление грунта (Rh) определяется по формуле: Rh = R0 + kg(h — 200), где h — глубина заложения фундамента в см, g — вес столба грунта, расположенного выше глубины заложения фундамента (кг/см2); к — коэффициент грунта (для песка — 0,25; для супеси и суглинка — 0,20; для глины — 0,15). Пример 2.Глинистый грунт на глубине 3 м при R0=4 кг/см2 будет иметь расчетное сопро¬тивление Rh = 10,3 кг/см2. Удельный вес глины — 1,4 кг/см2, а вес столба глины высо¬той 300 см — 0,42 кг/см2.
Сбор нагрузок
Сбор нагрузок осуществляется суммированием их каждого вида (постоянные, длительные, кратковременные) с умножением на грузовую площадь. При этом учитываются коэффициенты надежности по нагрузке.
Значения коэффициентов надежности по нагрузке согласно СП 20.13330.2011.
Нормативные значения полезных нагрузок в зависимости от назначения помещения согласно СП 20.13330.2011.
К постоянным нагрузкам относят собственный вес конструкций. К длительным – вес не несущих перегородок (применительно к частному строительству). Кратковременными нагрузками является мебель, люди, снег. Ветровыми нагрузками можно пренебречь, если речь не идет о строительстве высокого дома с узкими габаритами в плане. Разделение нагрузок на постоянные/временные необходимо для работы с сочетаниями, которыми для простых частных строений можно пренебречь, суммируя все нагрузки без понижающих коэффициентов сочетания.
По своей сути сбор нагрузок представляет собой ряд арифметических действий. Габариты конструкций умножаются на объемный вес (плотность), коэффициент надежности по нагрузке. Равномерно распределенные нагрузки (полезная, снеговая, вес горизонтальных конструкций) формируют опорные реакции на нижележащих конструкциях пропорционально грузовой площади.
Сбор нагрузок разберем на примере частного дома 10х10, один этаж с мансардой, стены из газоблока D400 толщиной 400мм, кровля симметричная двускатная, перекрытие из сборных железобетонных плит.
Схема грузовых площадей для несущих стен в уровне перекрытия первого этажа (в плане.
Схема грузовых площадей для несущих стен в уровне кровли (в разрезе.
Некоторую сложность представляет собой сбор снеговой нагрузки. Даже для простой кровли согласно СП 20.13330.2011 следует рассматривать три варианта загружения:
Схема снеговых нагрузок на кровлю.
Вариант 1 рассматривает равномерное выпадение снега, вариант 2 – не симметричное, вариант 3 – образование снегового мешка. Для упрощения расчёта и для формирования некоторого запаса несущей способности фундаментов (особенно он необходим для примерного расчёта) можно принять максимальный коэффициент 1,4 для всей кровли.
Конечным результатом для сбора нагрузок на ленточный фундамент должна быть линейно распределенная (погонная вдоль стен) нагрузка, действующая в уровне подошвы фундамента на грунт.
Таблица сбора равномерно распределенных нагрузок
Наименование нагрузки | Нормативное значение, кг/м2 | Коэффициент надежности по нагрузке | Расчётное значение нагрузки, кг/м2 |
---|---|---|---|
Собственный вес плит перекрытия | 275 | 1,05 | 290 |
Собственный вес напольного покрытия | 100 | 1,2 | 120 |
Собственный вес гипсокартонных перегородок | 50 | 1,3 | 65 |
Полезная нагрузка | 200 | 1,2 | 240 |
Собственный вес стропил и кровли | 150 | 1,1 | 165 |
Снеговая нагрузка | 100*1,4 (мешок) | 1,4 | 196 |
Всего: 1076 кг/м2
Нормативное значение снеговой нагрузки зависит от региона строительства. Его можно определить по приложению «Ж» СП 20.13330.2011. Собственные веса кровли, стропил, напольного перекрытия и перегородок взяты ориентировочно, для примера. Эти значения должны определяться непосредственным вычислением веса того или иного конструктива, или приближенным определением по справочной литературе (или в любой поисковой системе по запросу «собственный вес ххх», где ххх – наименование материала/конструкции).
Рассмотрим стену по оси «Б». Ширина грузовой площади составляет 5200мм, то есть 5,2м. Умножаем 1076кг/м2*5,2м=5595кг/м.
Но это ещё не вся нагрузка. Нужно добавить собственный вес стены (надземной и подземной части), подошвы фундамента (ориентировочно можно принять её ширину 60см) и вес грунта на обрезах фундамента.
Для примера возьмем высоту подземной части стены из бетона в 1м, толщина 0,4м. Объемный вес неармированного бетона 2400кг/м3, коэффициент надежности по нагрузке 1,1: 0,4м*2400кг/м3*1м*1,1=1056кг/м.
Верхнюю часть стены примем в примере равной 2,7м из газобетона D400 (400кг/м3) той же толщины: 0,4м*400кг/м3*2,7м*1,1=475кг/м.
Ширина подошвы условно принята 600мм, за вычетом стены в 400мм получаем свесы общей суммой 200мм. Плотность грунта обратной засыпки принимается равной 1650кг/м3 при коэффициенте 1,15 (высота толща определится как 1м подземной части стены минус толщина конструкции пола первого этажа, пусть будет в итоге 0,8м): 0,2м**1650кг/м3*0,8м*1,15=304кг/м.
Осталось определить вес самой подошвы при её обычной высоте (толщине) в 300мм и весе армированного бетона 2500кг/м3: 0,3м*0,6м*2500кг/м3*1,1=495кг/м.
Суммируем все эти нагрузки: 5595+1056+475+304+495=7925кг/м.
Более подробная информация о нагрузках, коэффициентах и других тонкостях изложена в СП 20.13330.2011.
Что такое ростверк: конструкция элемента
Ростверк, надежно фиксируясь к сваям и включая их в свою толщу, соединяет элементы основания. Монолитный ленточный ростверк может быть повышенный, высокий или заглубленный. Он устраивается при неблагоприятных геологических условиях грунта. Выполнение такого ростверка отличается высокими техническими и эксплуатационными характеристиками. Однако конструкция имеет повышенную трудоемкость, высокую стоимость работ и требует создания густого армирования.
Ростверк выполняет функцию равномерного распределения нагрузки по всему периметру основания.
Обратите внимание! Для строительства частного дома сборный ростверк использовать нецелесообразно, ибо это связано с весьма трудоемким и затратным процессом.
Сборный тип имеет и свои недостатки. В первую очередь процесс монтажа является весьма трудоемким, что связано со значительным весом металлических элементов. В отдельных местах ростверка могут образовываться области с невысокой прочностью, что связано с низкой жесткостью сварных соединений. В связи с образованием коррозии или гниения дерева конструкция является недолговечной, что ограничено 1020 годами эксплуатации.
Схема свайного фундамента.
Промежуточным решением между двумя предыдущими вариантами является монолитно-сборный ростверк. Сборная конструкция состоит из заранее изготовленных деталей, которые укладываются на сваи и связываются друг с другом шпоночным соединением. Осуществляется это во время строительства. Затем вся конструкция омоноличивается.
Мы проводим исследование грунта
Если в решили воспользоваться услугами специалиста, то исследование грунта включает в себя несколько простых этапов:
- на место будущей стройки прибывает бригада геологической службы и при помощи бурильной установки проделывают скважину глубиной 4-7 метров;
- полученные образцы направляются в лабораторию для анализа по итогам которого клиент получает заключение с подробным описанием свойств и особенностей грунта;
- на основе полученных данных можно делать выводы о типе будущего фундамента, а его площади , и количестве и видах сваи.
Интересный материал:
- Фундамент на сваях
- Усиление фундаментов
Таблица категорий и способов разработки почвы.
Категория грунтов
Типы грунтов
Плотность, кг/м 3
Способ разработки
Песок, супесь, растительный грунт, торф
Ручной (лопаты), машинами
Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором
Ручной (лопаты, кирки), машинами
Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой
Ручной (лопаты, кирки, ломы), машинами
Тяжелая глина, жирная глина со щебнем, сланцевая глина
Ручной (лопаты, кирки, ломы, клинья и молоты), машинами
Плотный отвердевший лёсс, дресва, меловые породы,сланцы, туф, известняк иракушечник
Ручной (ломы и кирки, отбойные молотки), взрывным способом
Граниты, известняки, песчаники, базальты, диабазы, конгломерат с галькой
Таблица категорий и способов разработки почвы.
Категория грунтов | Типы грунтов | Плотность, кг/м3 | Способ разработки |
1 | Песок, супесь, растительный грунт, торф | 600…1600 | Ручной (лопаты), машинами |
2 | Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором | 1600… 1900 | Ручной (лопаты, кирки), машинами |
3 | Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой | 1750… 1900 | Ручной (лопаты, кирки, ломы), машинами |
4 | Тяжелая глина, жирная глина со щебнем, сланцевая глина | 1900…2000 | Ручной (лопаты, кирки, ломы, клинья и молоты), машинами |
5…7 | Плотный отвердевший лёсс, дресва, меловые породы,сланцы, туф, известняк иракушечник | 1200…2800 | Ручной (ломы и кирки, отбойные молотки), взрывным способом |
8…11 | Граниты, известняки, песчаники, базальты, диабазы, конгломерат с галькой | 2200…3000 | Взрывным способом |
Когда нужно делать расчет оснований на несущую способность
Чертеж расчета фундамента по несущей способности
- Если на существующее или новое основание воздействуют значительные горизонтальные нагрузки, особенно от строящихся по соседству домов или регулярные вибрации от автомагистралей, промышленных предприятий.
- Сооружение было построено на уклоне или откос образовался со временем, обнажив внешнюю часть основания.
- Если подошва фундамента установлена на влагонасыщенных почвах.
- Когда на основание может воздействовать выталкивающая сила различного происхождения.
- Если нужно проверить устойчивость естественных и искусственных склонов.
Если на строительной площадке или в фундаменте существующего здания уже появились видимые деформации конструкций, всегда сначала обращают внимание на состояние почвы под подошвой и определяют их состояние. Поэтому, по нормативам существует сразу несколько различных видов деформаций почвы, которые зависят от внутренних и внешних факторов
Собираем показатели грунта
При проектировании фундамента необходимо проводить геодезический анализ грунта на строительной площадке, который позволяет определить три важных показателя — тип почвы, глубину ее промерзания и уровень расположения грунтовых вод. Исходя из типа грунта вычисляется его несущая характеристика, которая используется при расчете опорной площади основания. Глубина промерзания почвы определяет уровень заглубления фундамента — при строительстве в условиях пучинистых грунтов фундамент необходимо закладывать ниже промерзающего пласта земли
На основании данных о грунтовых водах определяется необходимость обустройства дренажной системы и гидроизоляции фундамента.Важно: вышеуказанные показатели грунта вы можете собрать самостоятельно, для этого вам потребуется лишь ручной бур и рулетка
Рис: Структура грунтов на территории Московской области
Для сбора показателей необходимо с помощью ручного бура по периметру площадки под застройку сделать несколько скважин глубиной 2-2.5 м. Одна скважина должна располагаться в центре участка, еще две — в центральных частях боковых контуров предполагаемого фундамента. Необходимость бурения нескольких скважин обуславливается тем, что на разных участках площадки может наблюдаться отличающийся уровень грунтовых вод. В первую очередь нужно определить тип почвы: в процессе бурения возьмите изымаемый из скважины грунт (с глубины 2-ух меров) и скатайте его в плотный цилиндр, толщиной 1-2 сантиметра. Затем попытайтесь согнуть цилиндр.
- Если почва рыхлая и цилиндр из нее сформировать невозможно (она попросту рассыпается), вы имеете дело с песчаным грунтом;
- Цилиндр скатывается, но при этом он покрыт трещинами и разламывается при сгибающем воздействии, значит грунт на участке представлен супесями;
- Цилиндр плотный, но при сгибании ломается — легкий суглинок;
- Грунт хорошо скатывается, но при сгибании покрывается трещинами — тяжелый суглинок с большим содержанием глины;
- Почва легко скатывается, не трескается и не ломается при сгибании — глинистый грунт.
Далее необходимо определить показатель уровня грунтовых вод. Оставьте пробуренные скважины на ночь, чтобы они заполнились водой. На следующее утро возьмите деревянную рейку двухметровой длины и обмотайте ее бумагой, опустите рейку в скважину. По мокрому участку определите, на каком расстоянии от поверхности скважины расположена вода.
Рис: Пробная скважина для определения уровня грунтовых вод
Важно: определить фактический уровень промерзания почвы в домашних условиях невозможно. Для этого необходимо специализированное оборудование, при этом сам анализ выполняется на протяжении длительного времени наблюдения за конкретным участком
Предлагаем вашему вниманию карту расчетной глубины промерзания почвы в разных регионах России, которую нужно использовать при самостоятельном проектировании фундамента.
Рис: Границы промерзания грунтов в разных регионах России
Как определить несущую способность грунта?
Схема развития деформаций и перемещений грунта.
Расчет оснований по несущей способности можно выполнить, определив тип грунта. Глину от песка визуально отличить так же легко, как и крупный песок от мелкого, высокую плотность от низкой. Даже если расчет оснований по несущей способности требуется проводить с учетом влажности, то определить влажность почвы не составит труда. На участке делаются скважины, по которым и определяется уровень глубины грунтовых вод. Если влаги не выделяется, то расчет оснований по несущей способности можно выполнять с учетом того, что почва сухая. Если вода скапливается в проделанных углублениях, то надо определить, в каком количестве
Это особенно важно для глинистых, песчаных грунтов. Если влажность высокая, то рекомендуется установка свай
Надо обращать внимание и на то, какая глубина заложения свай или ленточного фундамента планируется. Чтобы быстро и качественно выполнить такой расчет, надо пользоваться не только табличными данными, но и формулами
Расчет требует использования показателя R, которое показывает несущую способность для определения данных по фундаменту с шириной в 1 м, при глубине заложения в 2 м. Расчет производится при помощи следующей формулы:
- R = R * [1 + k1*(b – 100)/100] * (d +200)/2*200, при условии определения, что глубина заложения будет составлять до 2 м;
- R = R * [1 + k1 *(b – 100)/100] + k2*g*(d – 200), при условии определения, что для фундамента глубина заложения принимается больше 2 м.
Расчет выполняется с учетом таких данных:
Таблица значений несущей способности свай.
- k1 – это коэффициент, расчет которого проводить не надо, данные берутся из специальной таблицы. Например, значение в 0,125 применяется для песчаных и крупнообломочных. Для пылеватых, глинистых, для суглинка, супеси расчет проводится с подстановкой коэффициента в 0,5;
- k2 – это коэффициент, который используется для определения несущей способности песчаных и крупнообломочных почв;
- g – это коэффициент, который используется для определения удельного веса грунта, находящегося от подошвы основания и выше (используется для свай, лент, плит и прочего);
- b – ширина основания (для свай используется значение круглого либо квадратного сечения, тут применяется формула b=√а;
- d – глубина фундамента, тут значение зависит от того, какая группа фундаментов применяется, от условий строительства, будущих нагрузок и прочего. Методы расчета этого значения самые разнообразные, факторов, которые оказывают влияние на получение значения, много.
Методы подсчетов разные, лучше всего за помощью обращаться к специалистам. Если на участке уже стоят дома, которые были построены несколько лет назад и целостность их конструкции находится в отличном состоянии, то формулы используются в том виде, как они даны. Но если строений в округе нет, а состояние почвы вызывает сомнения, то лучше всего не полагаться на приближенные вычисления, а сразу заказать исследования. Это позволит обеспечить надежность и безопасность будущего дома.
Наши услуги
Компания Установка Свай» занимается погружением железобетонных свай — забивка свай, лидерным бурением и поставкой свай для сооружения свайного фундамента. Если Вас интересует проведение работ, связанных с проектировкой, гео разведкой, либо возведение свайного фундамента, воспользуйтесь формой внизу сайта.
Несущая способность грунта
Такое свойство грунта как его несущая способность — это первоочередная информация, которую необходимо выяснить на подготовительном этапе строительства фундамента.
Испытания свай
При строительстве часто используют в качестве фундаментов сваи. Но прежде чем вводить такие элементы в работу, должна быть проведена проверка их на прочность.
Таблица несущей способности различных грунтов
Прежде чем начинать строить дом, необходимо знать площадь опоры под него. Площадь опоры фундамента на грунт может быть различной. Практически это зависит от характеристик грунта. При уменьшении несущей способности почвы увеличивается площадь опоры фундамента. Способность различных видов грунта выдерживать нагрузку зависит от влажности, плотности и вида почвы на участке. Она оценивается в кг/см2.
Влажность грунта зависит от того, как расположены грунтовые воды.
Если влажность становится больше, то несущая способность почвы становится меньше. Определить влажность можно самостоятельно. Лопатой или буром выкапывается скважина или яма. Если через какой то период времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой.
Ниже приводится таблица плотности и несущей способности разных грунтов.
Вид грунта | Плотный грунт | Грунт средней плотности |
Песок крупный | 6 | 5 |
Песок среднего размера | 5 | 4 |
Супесь(сухая) | 3 | 2.5 |
Супесь влажная (пластичная) | 2.5 | 2 |
Мелкий песок (маловлажный) | 4 | 3 |
Мелкий песок (влажный) | 3 | 2 |
Глина (сухая) | 6 | 2.5 |
Глина влажная (пластичная) | 4 | 1 |
Суглинок (сухой) | 3 | 2 |
Суглинок влажный (пластичный) | 3 | 1 |
При разработке проекта дома для примерного расчета фундамента, как правило, несущую способность принимают 2 кг/см2.
Возведение свайно-винтового фундамента на болоте
Ещё на этапе планирования дома и, соответственно, выбора типа фундамента, необходимо провести пробное завинчивание, которое даст необходимые сведения о требуемой длине свай. Толщина свай и шаг их размещения определяется в соответствии с предполагаемыми нагрузками, но в среднем диаметр винтовых свай может варьироваться от 57 до 133 мм, а расстояние между ними составлять от 1,5 до 2,5 м. Глубина погружения, как правило, составляет от 1,5 м и больше. Технологию возведения свайно-винтового фундамента можно разделить на следующие этапы:
Разметка участка. Чем больше и тяжелее будет дом, тем больше понадобится соответствующих размеров опор. Размечают участок в соответствии с составленным ранее планом, для чего можно использовать деревянные колышки
Важно правильно выбрать шаг размещения свай, а также учесть тот факт, что несущие стены дома должны обязательно опираться на сваи. Вкручивание свай
После того как площадка размечена, приступают к вкручиванию опор
Вкручивание свай. После того как площадка размечена, приступают к вкручиванию опор
Для увеличения несущей способности фундамента, сваи закручивают до тех пор, пока не будет чувствоваться явное сопротивление вкручиванию, поэтому длина опор должна быть взята с запасом. Следует отметить, что эта точка сопротивления может быть различной на участке, поэтому глубина завинчивания свай также будет неидентичной. По окончании вкручивания всех свай, приступают к их обрезке в один уровень при помощи болгарки с дисками по металлу. Данный этап строительства фундамента, несмотря на кажущуюся трудоёмкость работ, довольно легко выполняется за 1−2 дня;
Бетонирование. Для увеличения жёсткости и прочности фундамента на болоте внутрь опор заливают бетонный раствор;
Приваривание оголовков. Оголовки представляют собой некие площадки диаметром, в два раза превышающим диаметр опор. При помощи сварочного аппарата данные элементы привариваются. Во избежание образования коррозийных процессов все сварочные швы обрабатываются краской на эпоксидной основе.
На этом возведение свайно-винтового фундамента окончено. Ещё одним преимуществом применения именно этого типа фундамента является отсутствие периода усадки, что позволяет приступить к следующему этапу строительства уже на следующий день. В некоторых случаях вместо оголовков используют швеллер, которым, так сказать, обвязывают все установленные сваи.
Возведение фундамента на болоте хоть и относится к одному из наиболее сложных и трудоёмких строительных этапов, не является невыполнимой задачей. Поэтому при правильном подходе, грамотном проведении всех расчётов и исследований, а также соблюдении технологических требований, проблем даже на такой неустойчивой почве возникнуть не должно.
Этапы исследования грунта
Определение УГВ
Зная уровень грунтовых вод вы можете определить наличие пучинистости почвы, являющейся одной из отправных точек при выборе фундамента под строительство дома.
Чтобы определить УГВ вам необходимо разработать 5 шурфов глубиной 2.5 по периметру площадки под застройку (4 по углам и 1 в центре). Оставьте скважины на ночь и на следующее утро, с помощью рулетки и обмотанной бумагой рейки, определите расстояние между поверхностью скважины и скопившейся в ней водой. Это и будет УГВ на участке.
Далее установите границу промерзания почвы для вашего региона, воспользовавшись таблицами по климатологии. Если полученный УГВ ниже, чем граница промерзания, значит зимой промерзает пласт сухого, не склонного к пучению грунта, что позволяет возводить здания на мелкозаглубленном фундаменте.
Если же УГВ выше уровня промерзания грунта, значит вы имеете дело с склонной к пучению почвой, в которой необходимо использовать фундаменты глубокого заложения.